135 research outputs found

    Modeling of gas transport in porous medium: Stochastic simulation of the Knudsen gas and a kinetic model with homogeneous scatterer

    Get PDF
    This paper is part of the Special Topic, Advances in Micro/Nano Fluid Flows: In Memory of Prof. Jason Reese.Mass transport of the Knudsen gas in a porous medium is investigated on the basis of the kinetic theory of gases. First, the mass flow conductance is computed numerically for various porosities and solid grain sizes by stochastic particle simulations (SPS). Then, a kinetic model with a homogeneous scatterer is introduced, which contains the reference Knudsen number as the sole parameter that characterizes the collision frequency of gas molecules with the micro-structural solid surface. With the aid of the standard asymptotic analyses for small and large Knudsen numbers combined with the percolation theory, the effective reference Knudsen number is identified to reproduce the SPS results for a wide range of porosities

    ^{31}P and ^{75}As NMR evidence for a residual density of states at zero energy in superconducting BaFe_2(As_{0.67}P_{0.33})_2

    Get PDF
    ^{31}P and ^{75}As NMR measurements were performed in superconducting BaFe_2(As_{0.67}P_{0.33})_2 with T_c = 30 K. The nuclear-spin-lattice relaxation rate T_1^{-1} and the Knight shift in the normal state indicate the development of antiferromagnetic fluctuations, and T_1^{-1} in the superconducting (SC) state decreases without a coherence peak just below T_c, as observed in (Ba_{1-x}K_{x})Fe_2As_2. In contrast to other iron arsenide superconductors, the T_1^{-1} \propto T behavior is observed below 4K, indicating the presence of a residual density of states at zero energy. Our results suggest that strikingly different SC gaps appear in BaFe_2(As_{1-x}P_{x})_2 despite a comparable T_c value, an analogous phase diagram, and similar Fermi surfaces to (Ba_{1-x}K_{x})Fe_2As_2.Comment: 4 pages, 5 figure

    Disorder, critical currents, and vortex pinning energies in isovalently substituted BaFe2_{2}(As1x_{1-x}Px_{x})2_{2}

    Get PDF
    We present a comprehensive overview of vortex pinning in single crystals of the isovalently substituted iron-based superconductor BaFe2_{2}(As1x_{1-x}Px_{x})2_{2}, a material that qualifies as an archetypical clean superconductor, containing only sparse strong point-like pins [in the sense of C.J. van der Beek {\em et al.}, Phys. Rev. B {\bf 66}, 024523 (2002)]. Widely varying critical current values for nominally similar compositions show that flux pinning is of extrinsic origin. Vortex configurations, imaged using the Bitter decoration method, show less density fluctuations than those previously observed in charge-doped Ba(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals. Analysis reveals that the pinning force and -energy distributions depend on the P-content xx. However, they are always much narrower than in Ba(Fe1x_{1-x}Cox_{x})2_{2}As2_{2}, a result that is attributed to the weaker temperature dependence of the superfluid density on approaching TcT_{c} in BaFe2_{2}(As1x_{1-x}Px_{x})2_{2}. Critical current density measurements and pinning force distributions independently yield a mean distance between effective pinning centers Lˉ90\bar{\mathcal L} \sim 90 nm, increasing with increasing P-content xx. This evolution can be understood as being the consequence of the P-dependence of the London penetration depth. Further salient features are a wide vortex free "Meissner belt", observed at the edge of overdoped crystals, and characteristic chain-like vortex arrangements, observed at all levels of P-substitution.Comment: 11 page
    corecore